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Abstract 

Background Oral cancer is a deadly disease and a major cause of morbidity and mortality worldwide. The purpose 
of this study was to develop a fuzzy deep learning (FDL)-based model to estimate the survival time based on clinico-
pathologic data of oral cancer.

Methods Electronic medical records of 581 oral squamous cell carcinoma (OSCC) patients, treated with surgery 
with or without radiochemotherapy, were collected retrospectively from the Oral and Maxillofacial Surgery Clinic 
and the Regional Cancer Center from 2011 to 2019. The deep learning (DL) model was trained to classify survival time 
classes based on clinicopathologic data. Fuzzy logic was integrated into the DL model and trained to create FDL-
based models to estimate the survival time classes.

Results The performance of the models was evaluated on a test dataset. The performance of the DL and FDL models 
for estimation of survival time achieved an accuracy of 0.74 and 0.97 and an area under the receiver operating charac-
teristic (AUC) curve of 0.84 to 1.00 and 1.00, respectively.

Conclusions The integration of fuzzy logic into DL models could improve the accuracy to estimate survival time 
based on clinicopathologic data of oral cancer.
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Background
Oral cancer, a major cause of morbidity and mortality 
worldwide, was estimated at over 370,000 new cases and 
was the cause of death in over 170,000 cases in 2020 [1]. 
More than 90% of oral cancers are oral squamous cell 
carcinomas (OSCCs) which originate from the mucosal  

epithelium of the oral cavity. Oral cancer is aggres-
sive in its biological behavior, causes extensive destruc-
tion of surrounding structures, develops cervical lymph 
node metastases, and may develop distant metastases 
over time, even after effective local treatment [2]. The 
gold standard for diagnosis of oral cancer is tissue biopsy 
with histopathological assessment [3]. Current therapeu-
tic decision-making in oral cancer depends on tumor 
staging, which is based on clinical, radiographic, and 
pathological examination, according to the tumor-node 
metastasis (TNM) system proposed by the American 
Joint Committee on Cancer (AJCC). Generally, the treat-
ment of choice for OSCC is surgical resection. Postopera-
tive adjuvant radiotherapy with or without chemotherapy 
is proposed based on the histopathology of the resec-
tion specimen [4]. Oral cancer treatments are primarily 
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costly and critically influence patients in terms of post-
operative facial appearance and quality of life. Since the 
survival rate of oral cancer is directly related to the stage 
at diagnosis, prevention and early detection efforts have 
the potential to not only reduce the incidence, but also 
improve the survival of those who develop this disease 
[5]. With advances in computational analytical research, 
the application of deep learning could be used to analyze 
and predict the survivability and associated variables of 
oral cancer. Survival estimation is valuable to both physi-
cians and patients in determining cancer outcomes, con-
tributing to appropriate treatment planning, and avoiding 
unnecessary therapies.

Deep learning (DL), a subfield of artificial intelligence 
(AI), is known to be a human-inspired brain neural net-
work. DL has been demonstrated to make highly accurate 
predictions from large amounts of high feature dimen-
sional data by representing complex relationships using 
multilevel structures [6]. In the medical field, DL has 
been proven to have efficient information processing 
and has been widely used in medical specialties includ-
ing pathology, radiology, oncology, surgery, etc. In recent 
years, various studies have been conducted on the appli-
cation of DL to the analysis of oral cancer data, includ-
ing imaging and clinicopathological data, with the aim 
of increasing the survival rate of patients [7–9]. For the 
AI-based survivability prediction of oral cancer, there 
are various studies, which implemented machine learn-
ing (ML) and DL algorithms in prediction of oral cancer 
prognosis and survival rate, including random survival 
forests, logistic regression, Support Vector Machine 
(SVM), K-nearest neighbors, Naïve Bayes, and DL mod-
els [9–16].

Nevertheless, the characteristic of medical data (includ-
ing cancer data) is unpredictable uncertainty, which is a 
challenge in the medical field and affects the DL model 
by not knowing the optimized architecture and param-
eters to predict future data. Data uncertainty arises from 
several sources including missing information, noise, 
and bias [17]. To overcome data uncertainties, the fuzzy 
logic system has been integrated with DL, called fuzzy 
deep learning (FDL), to solve classification problems. 
The fuzzy system automatically learns the fuzzy mem-
bership function to extract fuzzy rules from the training 
data. Fuzzy logic provides a dynamic, probable, real-time, 
intensive rule base for the system [18]. In recent years, 
FDL has been successfully applied and improved the 
classification and mortality prediction of various can-
cer data, such as melanoma diagnosis from clinical skin 
image data [19], detection of the indirect immunofluo-
rescence pattern associated with nasopharyngeal cancer 
from pathological data [20], and prediction of breast can-
cer mortality using genomic data [18]. To predict cancer 

survivability, ‘time to event’, which is the time from can-
cer diagnosis to survival or death at a specific point of 
time, should be incorporated into the analysis of cancer 
data. Therefore, the application of FDL to clinicopatho-
logic and survival time data of oral cancer might be able 
to address data uncertainty and achieve more precise 
mortality predictions for oral cancer patients.

The aims of this study are to develop and evaluate an 
FDL-based survival time estimation model that utilizes 
clinicopathological data to predict the survival time of 
oral cancer patients. This work is expected to be a medi-
cal decision support model for clinicians to establish the 
most appropriate treatment planning and predict the 
treatment outcome of oral cancer for the new era of med-
ical practice.

Methods
This work was divided into two experiments by deploy-
ing the DL-based multiclass classification architecture 
and integrating the fuzzy logic system to develop the 
FDL model for survival estimation of oral cancer. This 
work was performed under the guidelines of the Trans-
parent reporting of a multivariable prediction model for 
individual prognosis or diagnosis (TRIPOD), the report-
ing guideline for diagnostic and prognostic prediction 
studies [21]. The methodologic workflow is illustrated in 
Fig. 1.

Data acquisition
Electronic medical records of 891 OSCC patients, treated 
with surgery, with or without radiochemotherapy, 
between January 2011 and December 2019 from the Oral 
and Maxillofacial Surgery Clinic and the Regional Can-
cer Center, were included in this study. Inclusion criteria 
were: 1) histologically confirmed primary OSCC treated 
with surgery with or without radiochemotherapy, 2) 
post-operative follow-up of at least 5 years, and 3) avail-
ability of relevant clinicopathologic variables. Exclusion 
criteria were preoperative patients with metastatic dis-
ease, secondary primary cancer, perioperative mortality, 
history of radiotherapy and/or chemotherapy, or previ-
ous history of head and neck cancer. According to the 
exclusion criteria, 581 patient records were suitable for 
analysis and DL model development. The variables used 
for developing the DL models included clinical charac-
teristics, pathologic findings after surgery, primary treat-
ment, postoperative locoregional recurrence, distant 
metastases, and survival time. The overall survival time 
variable was categorized into six classes based on the 
range of survival time from 0-12 months to more than 60 
months for the DL model’s learning process. The missing 
data values were resolved through imputation. In addi-
tion, the class imbalance data was augmented with the 
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oversampling technique. To develop the DL model, the 
dataset was randomly split and assigned as the training 
(70%), validation (10%), and test datasets (20%), respec-
tively. Data splitting technique is crucial in DL as it helps 
to prevent overfitting, reduce dataset bias, and enhance 
model performance [22]. The dataset analyzed during 
the current study is not publicly available but is available 
from the corresponding author upon reasonable request.

Deep learning model
The basic architecture of a DL consists of three compo-
nents: input layers, feature-extraction layer, and clas-
sification layer. In this study, the sequential model with 
densely connected neural network layer was selected to 
create DL-based classification models for estimation of 
the overall survival time of oral cancer patients based 
on clinicopathologic data of oral cancer. The sequential 
model, which is a linear stack of layers where each layer 
has exactly one input tensor and one output tensor, is 
a class of machine learning models designed for tasks 
that involve sequential data, including textual data, time 
series data or any other ordered data [23].

Fuzzy logic systems
Fuzzy logic aims to perform representations in nonlin-
ear ways just as human logic does. Linguistic terms are 
used that differ from conventional logic, which is usually 
binary, and fuzzy logic allows gradual representations 
in a continuous space, thereby allowing levels of uncer-
tainty [24, 25]. Fuzzy sets allow the use of membership, 
meaning their elements are capable of being part of one 
or more classes at the same time. The range of these sets 
is defined as human logic, where they depend on the con-
cept or user applying them.

The Fuzzy set A is from Universe X that goes from [0, 1] , 
belonging to a continuous function, i.e., µA : X → [0, 1] . 
The membership function A is denoted as µA(x) ; this 
function is defined in Eq. (1).

The different membership functions (MFs) most used 
to represent a fuzzy set are the following: the triangular 
MF, the trapezoidal MF, and the Gaussian MF, which is 
used in the fuzzy edge-detection approach presented in 
this paper. The Gaussian MF consists of two parameters 
{c, σ } and is expressed in Eq. (2); variable c represents the 
mean of the MF and σ the variation.

Fuzzy deep learning
DLs offer a new approach for researchers to explore the 
various effective ways to overcome the "black-box" issue. 
One of the promising solutions found by researchers 
is to incorporate the concepts of the explainable rule-
based structure called fuzzy inference with DL. Fuzzy 
systems can be used as an integral part of DL models by 
using fuzzy parameters or by using fuzzy logic for select-
ing training parameters (Fig. 2.). The FDL is divided into 
three main components:

 (i) Input Membership Function layer (fuzzification 
and defuzzification part)

 In this step, the finetuned data after preprocessing has 
been applied into the model where every input 
xi in this layer is an adaptive MF to generate the 
membership degree of linguistic variables. This 
stage helps to convert discrete values into the fuzzy 
membership degree.

 (ii) Deep learning part
 This is the most essential stage in terms of processing 

the data with a huge number of input features for 
some high-level abstraction in terms of DL. The 
output coming from the previous stage is used in 
this layer to initialize the DL. Since the proposed 

(1)A = {(x,µA(x))|x ∈ X}

(2)gaussian(x; c, σ) = exp −
1

2

(x − c)2

σ 2

Fig. 1 The methodology workflow
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approach transmits the information in two ways, 
therefore it feed-forward the fuzzy input signals 
to the hidden layer. The nodes in the hidden layers 
are interconnected to each other in a way that the 
information flows in a forward pass until the next 
layer. The input information processed via a single 
neuron is presented in Fig. 2.

 (iii) Output layer
 From this stage, the DL drives the defuzzification block. 

The features extracted and learned from the data 
via DNN will be further processed to defuzzifier 
and generates the output of the proposed model 
depending on whether or not the fuzzy if-then 
rules exists in the network. A benefit to this sys-
tem is that these fuzzy rules are used to explain 
the behavior of the fuzzy system. It is to be noted, 
however, that expert knowledge is not required, as 
the network will be set up to automatically extract 
fuzzy rules from the numerical data. Parameters 
in this layer are linear parameters that are tuned 
during the training process of the model. After the 
process of defuzzification, the next layer is the last 
layer in which the output of the whole network is 
calculated as follows:

Here,x∗ is defuzzified and fi represents the firing area 
of ith rules and N   is the total number of rules fired and wi 
represents the center of area. This layer simply sums up 
the outputs of all rules in the previous layer and converts 

(3)x∗ =

∑N
i=1 wifi

∑N
i=1 wi

fuzzy values into discrete output. Afterward, the learn-
ing algorithm back-propagates the error to update the 
weights and parameters of the model until the predicted 
output is similar to the desired output for efficient classi-
fication of the data. The weights of the nodes are updated 
using a gradient-based optimization algorithm [24–26] 
which combines between Stochastic Gradient Descent 
(SGD) with backpropagation.

The FDL approach enables the extraction of fuzzy rules 
with the involvement of a human expert to solve the 
"black-box" problem of DL, which achieves better accu-
racy than a DL with the same level of abstraction [26].

Experiment
This work developed FDL- and DL- based survival time 
estimation models and compared the survival predic-
tion performance with machine learning (ML) models, 
including support vector machines (SVM), random forest 
(RF).

FDL‑ and DL‑ based survival time estimation models
The FDL model was then developed by combining the 
fuzzy logic and deep neural network into a single archi-
tecture. The proposed models were implemented using 
a Tesla P100 (Nvidia Corporation, CA, USA), Nvidia 
driver: 460.32 (Nvidia Corporation, CA, USA) and 
CUDA: 11.2 (Nvidia Corporation, CA, USA). TensorFlow 
and Keras packages were implemented for core layers 
regular densely-connected neural network layer model. 
FDL were initialized with a learning rate of 0.00001 and 
batch size of 32. Training was stopped after 12 epochs 
passed without improvement in validation accuracy and 
there was no significant indication of over-fitting.

Fig. 2 The process of fuzzy deep learning model
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ML‑based survival estimation models
Two traditional ML models, including SVM and RF, 
were adopted to create the ML-based survival estima-
tion models with the training dataset for comparison to 
FDL-based survival time estimation model. The SVM is 
an ML that aims to find a hyperplane to maximize the 
margin between classes by mapping and transforming 
the instance space. SVM cast survival analysis as a clas-
sification problem with an ordinal target variable [27, 28]. 
RF is an ML that is most frequently used to solve prob-
lems related to classification and regression by building 
ensembles from decision trees and combining the results 
to give a final decision. RF extends random forest to cen-
sored data over the entire lifetime [29].

The proposed models were implemented using a Tesla 
P100 (Nvidia Corporation, CA, USA), Nvidia driver: 
460.32 (Nvidia Corporation, CA, USA) and CUDA: 11.2 
(Nvidia Corporation, CA, USA). The model is developed 
using TensorFlow and scikit-learn package of Python 
programming. The hyperparameter of SVM tuning uses 
grid search and cross validation and training SVM model 
using radial kernel. For the hyperparameter of RF, we 
have defined 10 trees in our random forest and the loss 
function, we have used entropy to measure the quality of 
the split.

Model evaluation and statistical analysis
The statistical analysis was performed using the R pro-
gramming language (R Core Team, Vienna, Austria, 
2018). The estimation performance of models was evalu-
ated by precision, recall, F1 score, sensitivity, specificity, 
and accuracy. Receiver operating characteristic (ROC) 
was generated using a Python script. The ROC curve 
plotted by varying the operating threshold was used to 
assess the ability of the model to distinguish each class. 
An area under the ROC curve (AUC) was used to sum-
marize the accuracy for model classification.

Results
The clinicopathologic characteristics of the 581 patients 
in this study were as follows: 78 patients were at stage I; 
109 patients were at stage II; 106 patients were at stage 
III; 279 patients were stage IVa; and 9 patients were 
at stage IVb according to the  7th edition of American 
Joint Committee on Cancer (AJCC) staging [4]. After a 
5-year follow-up after treatment, 78 patients had local 
recurrence, 35 patients had distant metastases, and 279 
patients had died. For overall survival time of oral cancer 
patients, 279 patients died in 60 months, and 302 patients 
survived more than 60 months. The clinicopathologic, 
primary treatment, postoperative recurrence, distant 

metastasis, and survival time variables of the dataset, 
which were divided into six classes according to the sur-
vival time, are shown in Table 1.

DL‑based survival time estimation model
The DL model’s performance for oral cancer survival time 
estimation based on clinicopathologic data is reported in 
Table  2. The DL-based survival time estimation model 
achieved a precision of 0.00 to 0.97, a recall (sensitivity) 
of 0.00 to 1.00, an F1 score of 0.00 to 0.98, and a specific-
ity of 0.82 to 1.00 for estimating oral cancer survival time. 
In addition, the overall accuracy of the model was 0.74. 
The AUC ranged from 0.84 to 1.00, indicating excellent 
agreement. The ROC curves of the model are shown in 
Fig. 3.

FDL‑based survival time estimation model
The FDL model’s performance for oral cancer sur-
vival time estimation based on clinicopathologic data is 
reported in Table  3. The FDL-based survival time esti-
mation model achieved a precision of 0.8 to 1.00, a recall 
(sensitivity) of 0.9 to 1.00, an F1 score of 0.89 to 1.00, and 
a specificity of 0.97 to 1.00 for estimating oral cancer sur-
vival time. In addition, the overall accuracy of the model 
was 0.97. The AUC of all classes was 1.00, indicating 
excellent agreement. The ROC curves of the model are 
shown in Fig. 3.

ML‑based survival estimation models
The performance of SVM and RF models for oral cancer 
survival time estimation based on clinicopathologic data 
is shown in Table 4. The SVM and RF models achieved a 
precision of 0.00 to 0.62, and 0.00 to 1.00, a recall (sensi-
tivity) of 0.00 to 0.46, and 0.00 to 1.00, an F1 score of 0.00 
to 0.45, and 0.00 to 1.00, and a specificity of 0.52 to 0.99, 
and 0.87 to 1.00 for estimating oral cancer survival time, 
respectively. In addition, the overall accuracy of the SVM 
and RF models was 0.90 and 0.91, respectively. The AUC 
of SVM and RF ranged from 0.49 to 0.59 and 0.49 to 1.00, 
respectively. The ROC curves of the model are shown in 
Fig. 3.

Discussion
This article proposes an FDL-based survival time estima-
tion model based on clinicopathologic variables of oral 
cancer with the ability to estimate survival time within 
5 years after surgical treatment of oral cancer patients. 
Oral cancer mortality may vary in each patient, even at 
the same TNM stage and treatment, due to the uncertain 
nature of the cancer data, which affected the ability of the 
AI or DL model to correctly predict or estimate the sur-
vival time of cancer patients. The application of a fuzzy 
system to DL can tackle such uncertain and imprecise 
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Table 1 Summary of clinicopathologic, primary treatment, postoperative recurrence, distant metastasis, and survival time variables of 
the overall dataset (n=581).

Variables Number of patients (%)

Sex Male 278 (47.8%)

Female 303 (52.2%)

Age < 41 years 41 (7.1%)

41 – 60 years 241 (41.4%)

>60 years 299 (51.5 %)

Tumor location Oral tongue 258 (44.4%)

Floor of mouth 53 (9.1%)

Buccal mucosa 64 (11.0%)

Alveolar ridge 110 (18.9%)

Hard palate 13 (2.2%)

Lip 67 (11.6%)

Retromolar trigone 16 (2.8%)

T stage T1 98 (16.9%)

T2 194 (33.4%)

T3 100 (17.2%)

T4a 186 (32.0%)

T4b 3 (0.5%)

pN stage N0 298 (51.3%)

N1 107 (18.4%)

N2a 25 (4.3%)

N2b 108 (18.6%)

N2c 38 (6.5%)

N3 5 (0.9%)

TNM stage I 78 (13.4%)

II 109 (18.8%)

III 106 (18.2%)

IVa 279 (48.0%)

IVb 9 (1.6%)

Histologic grade Well 387 (66.6%)

Moderate 165 (28.4%)

Poor 29 (5.0%)

Lymph node metastasis Positive 283 (48.7%)

Negative 298 (51.3%)

Lymphovascular invasion Positive 100 (17.2%)

Negative 481 (82.8%)

Perineural invasion Positive 138 (23.8%)

Negative 443 (76.2%)

Margin Positive 114 (19.6%)

Close 20 (3.4%)

Clear 447 (77.0%)

Extranodal extension Positive 44 (7.6%)

Negative 537 (92.4%)

Primary treatment Surgery only 150 (25.8%)

Surgery combines with radiotherapy 302 (52.0%)

Surgery combines with concurrence chemoradiotherapy 129 (22.2%)

Locoregional recurrence Local recurrence 78 (13.4%)

No recurrence 503 (86.6%)
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information through the process of fuzzification. Numer-
ical input was converted to fuzzy sets or linguistic state-
ments with some degree of membership. The broad 
framework provided by synthesizing control rules based 
on real medical data has been shown to be effective in 
improving the performance rate and accuracy of model 
prediction of uncertainty data [30].

This study demonstrated that integrating the fuzzy 
logic with the DL model yielded better optimized capa-
bility, which achieved an overall accuracy of 0.97 and an 
AUC of 1.00. The performance was higher than the origi-
nal DL model, which achieved an overall accuracy of 0.74 
and an AUC of 0.84 to 1.00, for oral cancer survival time 
estimation. In addition, the performance of FDL model 
also achieved higher accuracy than the traditional ML 
models, including SVM and RF, which achieved an over-
all accuracy of 0.90 and 0.91, for oral cancer survival time 
estimation, respectively. Improved accuracy of FDL indi-
cated that the fuzzy logic affected model performance by 
increasing flexibility and improving classification perfor-
mance in the analysis of clinicopathologic variables to 
estimate survival time of oral cancer patients. A previous 
study on the application of the fuzzy system to analyze 

cancer data found that the fuzzy system could improve 
the accuracy of DL models for the prediction of breast 
cancer mortality with an accuracy of 0.87 [18]. In oral 
cancer, clinicopathologic factors; including TNM stag-
ing, adverse pathologic features, and tumor recurrence; 
were related to oral cancer prognosis that affected patient 
survival time [31, 32]. A patient with oral cancer dying 
within a short interval after diagnosis is a more hazardous 
situation than that of a patient dying after a long survival 
interval. Therefore, a more accurate survival estimation 
model can offer several advantages, including extract-
ing the meaningful information from clinicopathologi-
cal data in oral cancer, connecting the significance of 
features related to the oral cancer patient outcomes, and 
providing precise survival estimation results for cancer 
mortality using clinicopathological data.

In the real-world scenario, the cancer patient might 
want to know their prognosis and even survival time after 
cancer treatment. Traditional survival analysis meth-
ods, including the Cox proportional hazards regression 
model, have been used to estimate survival outcomes 
for individuals and have generally focused on differences 
in patient cohorts [33]. These models make linearity 

Table 1 (continued)

Variables Number of patients (%)

Post operative distant metastasis Lung metastasis 29 (5.0%)

Bone metastasis 6 (1.0%)

No metastasis 546 (94.0%)

Overall survival time (Class) 0 – 12 months (Class 0) 154 (26.5%)

13 – 24 months (Class 1) 67 (11.5%)

25 – 36 months (Class 2) 33 (5.7%)

37 – 48 months (Class 3) 19 (3.3%)

49 – 60 months (Class 4) 6 (1.0%)

> 60 months (Class 5) 302 (52.0%)

Table 2 Multiclass classification performances of deep learning in estimation of oral cancer survival time

AUC  Area under the receiver operating characteristic (ROC) curve

Class Precision Recall (Sensitivity) F1‑score Accuracy Specificity AUC of 
ROC 
curve

Class 0: 0 – 12 months 0.74 0.45 0.56 0.81 0.82 0.86

Class 1: 13 – 24 months 0.38 0.62 0.47 0.84 0.95 0.87

Class 2: 25 – 36 months 0.29 0.29 0.29 0.91 0.95 0.84

Class 3: 37 – 48 months 0.29 0.50 0.36 0.94 0.98 0.90

Class 4: 49 – 60 months 0.00 0.00 0.00 0.99 0.99 0.97

Class 5: > 60 months 0.97 1.00 0.98 0.98 1.00 1.00

Overall accuracy 
= 0.74
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Fig. 3 The receiver operating characteristic (ROC) curves for multiclass classification of DL, FDL, SVM and RF in survival time estimation. The 
AUC of DL, FDL, SVM and RF were 0.84 to 1.00, 1.00, 0.49 to 0.59, and 0.49 to 1.00 for classification of survival time classes, respectively. AUC, area 
under the ROC curve; DL, deep learning; FDL, fuzzy deep learning; SVM, Support Vector Machines; RF, Random Forest

Table 3 Multiclass classification performances of Fuzzy deep learning in estimation of oral cancer survival time

AUC  Area under the receiver operating characteristic (ROC) curve

Class Precision Recall (Sensitivity) F1‑score Accuracy Specificity AUC of 
ROC 
curve

Class 0: 0 – 12 months 1.00 0.90 0.95 0.97 0.97 1.00

Class 1: 13 – 24 months 0.86 0.92 0.89 0.97 0.99 1.00

Class 2: 25 – 36 months 0.88 1.00 0.93 0.99 1.00 1.00

Class 3: 37 – 48 months 0.80 1.00 0.89 0.99 1.00 1.00

Class 4: 49 – 60 months 1.00 1.00 1.00 1.00 1.00 1.00

Class 5: > 60 months 1.00 1.00 1.00 1.00 1.00 1.00

Overall accuracy 
= 0.97
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assumptions and therefore cannot model nonlinear rela-
tionships that may be present in a real-world setting, 
reflecting the complexity of biomedicine data. Unlike 
traditional survival analysis methods, DL models exhibit 
improved fit for variables with a nonlinear relationship, 
which can automatically survival risks using nonlinear 
risk functions and to predict individual survival out-
comes from learned representations [34, 35]. However, 
the characteristic of oral cancer data is not only nonlin-
ear relationships, but also unpredictable uncertainty. To 
deal with this uncertain nature of oral cancer data, this 
study integrated the fuzzy logic system with DL to create 
the FDL model and found that the FDL model achieved 
higher accuracy in estimating survival time of oral can-
cer than the DL model. The results demonstrated that 
the fuzzy logic system had an advantage in dealing with 
the uncertain nature of oral cancer data. Therefore, this 
FDL-based data analysis model could be used to benefit 
oral cancer physicians, including oral and maxillofacial 
surgeons, otolaryngologists, and oncologists. This clini-
cal decision-making model based on clinicopathologic 
data could be used in treatment planning and prognosis 
prediction to avoid unnecessary treatment for oral can-
cer patients. Moreover, this model could also be benefi-
cial for cancer patients to plan and manage their private 
affairs and family issues from the survival time and dis-
ease prognosis.

This study has limitations that need to be addressed. 
First, the limited amount of data and the class imbal-
ance of clinicopathologic variables, especially TNM stag-
ing, which is a common problem of DL research in the 

medical field [36]. The cancer data used in this study 
included only surgical cases and were obtained from 
only two cancer centers. Second, the variables analyzed 
in this study were only clinical and pathological fac-
tors from surgical cases of oral cancer. The future direc-
tion of this study is to establish a larger dataset of oral 
cancer from multi-cancer centers with other treatment 
modalities data, including treatment with radiotherapy 
only and/or chemotherapy or palliative treatment of oral 
cancer patients. In addition, we will consider integrating 
the fuzzy logic system to Transformer, which was based 
solely on attention mechanisms, dispensing with recur-
rence and convolutions entirely [37], to develop an AI-
based medical model for oral cancer data analysis. This is 
expected to make the model more robust and reliable for 
implementation in the real-world situation. Moreover, 
the DL-based survival prediction of oral cancer should 
consider genomic data as another key parameter to ana-
lyze and predict the survival rate of oral cancer patients.

Conclusions
The integration of fuzzy logic and DL into a single archi-
tecture could improve the performance of the multi-
class classification model to classify and estimate oral 
cancer survival time with promising results. This model 
is expected to provide an AI-based oral cancer survival 
time estimation based on clinicopathologic data as sup-
plementary information for clinicians to select the most 
appropriate treatment planning for the oral cancer 
patient.

Table 4 Multiclass classification performances of machine learning models in estimation of oral cancer survival time

AUC  Area under the receiver operating characteristic (ROC) curve

Models Class Precision Recall 
(Sensitivity)

F1‑score Accuracy Specificity AUC of 
ROC 
curve

Support Vector Machines Class 0: 0 – 12 months 0.53 0.26 0.35 0.74 0.77 0.59

Class 1: 13 – 24 months 0.13 0.46 0.20 0.59 0.90 0.53

Class 2: 25 – 36 months 0.11 0.14 0.13 0.88 0.94 0.53

Class 3: 37 – 48 months 0.13 0.25 0.17 0.91 0.97 0.59

Class 4: 49 – 60 months 0.00 0.00 0.00 0.97 0.99 0.49

Class 5: > 60 months 0.62 0.35 0.45 0.55 0.52 0.56

Overall accuracy = 0.90
Random Forest Class 0: 0 – 12 months 0.55 0.68 0.61 0.77 0.87 0.74

Class 1: 13 – 24 months 0.29 0.31 0.30 0.84 0.91 0.61

Class 2: 25 – 36 months 0.00 0.00 0.00 0.92 0.94 0.49

Class 3: 37 – 48 months 0.00 0.00 0.00 0.95 0.96 0.49

Class 4: 49 – 60 months 0.00 0.00 0.00 0.99 0.99 0.50

Class 5: > 60 months 1.00 1.00 1.00 1.00 1.00 1.00

Overall accuracy = 0.91
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