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Abstract 

Background Dental resin-based composites are widely recognized for their aesthetic appeal and adhesive prop-
erties, which make them integral to modern restorative dentistry. Despite their advantages, adhesion and biome-
chanical performance challenges persist, necessitating innovative strategies for improvement. This study addressed 
the challenges associated with adhesion and biomechanical properties in dental resin-based composites by employ-
ing molecular docking and dynamics simulation.

Methods Molecular docking assesses the binding energies and provides valuable insights into the interactions 
between monomers, fillers, and coupling agents. This investigation prioritizes  SiO2 and TRIS, considering their consist-
ent influence. Molecular dynamics simulations, executed with the Forcite module and COMPASS II force field, extend 
the analysis to the mechanical properties of dental composite complexes. The simulations encompassed energy mini-
mization, controlled NVT and NPT ensemble simulations, and equilibration stages. Notably, the molecular dynamics 
simulations spanned a duration of 50 ns.

Results SiO2 and TRIS consistently emerged as influential components, showcasing their versatility in promot-
ing solid interactions. A correlation matrix underscores the significant roles of van der Waals and desolvation 
energies in determining the overall binding energy. Molecular dynamics simulations provide in-depth insights 
into the mechanical properties of dental composite complexes. HEMA-SiO2-TRIS excelled in stiffness, BisGMA-SiO2-
TRIS prevailed in terms of flexural strength, and EBPADMA-SiO2-TRIS offered a balanced combination of mechanical 
properties.

Conclusion These findings provide valuable insights into optimizing dental composites tailored to diverse clinical 
requirements. While EBPADMA-SiO2-TRIS demonstrates distinct strengths, this study emphasizes the need for further 
research. Future investigations should validate the computational findings experimentally and assess the material’s 
response to dynamic environmental factors.
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Introduction
Dental resin-based composites have been widely adopted 
in modern restorative dentistry, primarily due to their 
superior aesthetic characteristics and capacity to estab-
lish direct adhesive bonds with tooth structures [1]. These 
materials, consisting of a matrix comprising polymeriz-
able monomers and inorganic fillers, offer aesthetically 
pleasing and biocompatible options for tooth restoration 
[2]. The matrix generally constitutes a three-dimensional 
dental resin network incorporating bisphenol-a-glycidyl 
methacrylate (Bis-GMA) blended with triethylene gly-
col dimethacrylate (TEGDMA) monomers [3]. However, 
despite their advantages, dental resin composites have 
limitations. These limitations include challenges related 
to adhesion to tooth surfaces and suboptimal biome-
chanical properties compared to traditional restorative 
materials such as amalgam or ceramics [4, 5]. Adhesion 
is paramount for the long-term success of dental resto-
ration [6]. Microleakage at the composite-tooth interface 
can result in secondary caries and restoration failure. 
Additionally, dental composites often exhibit inferior 
flexural strength and fracture toughness compared to 
alternatives, limiting their ability to withstand rigorous 
masticatory forces in the oral cavity [7, 8].

Optimizing adhesion to tooth structures is pivotal to 
preventing microleakage and secondary caries, com-
mon precursors of restoration failure and patient dis-
comfort [9, 10]. Incorporating inorganic fillers, such 
as  SiO2,  CaCO3,  CeO2, and  HCa5O13P3, plays a crucial 
role in enhancing the properties of dental resins. One 
primary benefit is reducing polymerization shrinkage, 
a common challenge in dental resin materials. Intro-
ducing these fillers mitigates the overall volume con-
traction during polymerization, improves dimensional 
stability, and minimizes the risk of gaps or microleak-
age at the restoration-tooth interface [11–14]. Further-
more, enhancing biomechanical properties in dental 
resin composites, encompassing parameters such as 
Young’s modulus, shear modulus, and flexural strength, 
is paramount in ensuring their longevity and resilience 
in the demanding oral environment [7]. Young’s modu-
lus, a measure of material stiffness, plays a pivotal role 
in determining how a dental composite responds to 
external forces. For dental restorations, a high Young’s 
modulus is of particular interest in scenarios where the 
restoration is directly subjected to chewing stress. This 
is crucial to prevent the risk of inducing cracks in the 
tooth structure, ensuring the restoration can withstand 
the demanding forces exerted during mastication [15–
18]. On the other hand, the shear modulus represents a 
material’s resistance to deformation under shear stress. 
In dental applications, shear force is common during 
biting and chewing. A higher shear modulus implies 

greater resistance to shape distortion under shear 
stress, contributing to the overall structural integrity 
of dental composites [19–21]. Furthermore, flexural 
strength is a critical indicator of dental material per-
formance, dictating its ability to endure bending forces 
encountered during mastication [22–24].

These challenges underscore the pressing need for 
innovative strategies to enhance the performance of 
dental resin composites. This research paper embarks 
on a pioneering journey to address these limitations 
by applying molecular dynamics-driven optimization. 
Molecular docking and molecular dynamics simula-
tions have evolved into formidable tools in drug dis-
covery and materials science [25, 26]. When applied 
to dental resin composites, these computational tech-
niques present an opportunity to identify candidate 
modifiers, such as adhesion promoters or reinforcing 
agents, and predict their efficacy in ameliorating adhe-
sion and biomechanical properties.

As a fundamental component of this research, molec-
ular docking entails the computational anticipation of 
binding interactions among molecules. Dental resin 
composites allow the evaluation of composite con-
stituents’ interaction with tooth structures or other 
pertinent biomolecules [27]. This knowledge, gleaned 
from molecular docking simulations, can be used as 
a compass for selecting modifiers capable of enhanc-
ing adhesion. In contrast, molecular dynamics (MD) 
simulations offer a dynamic perspective on molecular 
interactions over time [28]. By subjecting composite 
materials to dynamic conditions that mimic the oral 
environment, researchers can acquire insights into the 
evolving nature of intermolecular interactions. This 
dynamic understanding holds the potential to unveil 
avenues for optimization in the pursuit of improved 
adhesion and biomechanical properties.

MD simulations have emerged as a pivotal atomic-
level method in dental materials, offering a bottom-up 
approach for characterizing and predicting material 
properties. This study employed MD to investigate the 
reinforcement effects and mechanisms within a dental 
resin composite model that integrates monomers, fill-
ers, and coupling agents. The objective is to furnish a 
nanoscale understanding of the structures and perfor-
mance of dental resin systems, specifically focusing on 
their impact on the biomechanical properties of dental 
resins. By scrutinizing the interactions at the atomic and 
molecular levels, this study seeks to unravel the intricate 
details governing the behavior of these composite materi-
als. This approach promises to provide valuable insights 
into the nuanced world of dental materials, paving the 
way for informed advancements and innovations in 
restorative dentistry.
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Methods
The methodology employed in this research represents 
a comprehensive and systematic approach to investi-
gating and optimizing the adhesion and biomechanical 
properties (Young’s modulus, shear modulus, and flex-
ural strength) of dental resin-based composites using 
molecular docking and dynamics-driven simulations. 
This section provides a detailed overview of the criti-
cal steps and their importance in achieving the research 
objectives.

Selection of dental resin‑based composites for study
The initial step in this research involved careful selec-
tion of dental resin-based composites to form the basis 
of the study. These composites were selected because 
of their diverse formulations and properties available 
on the market. Several commercially available dental 
resin-based composites were chosen to ensure a repre-
sentative sample that reflected variations in monomer 
composition, filler content, and polymerization kinet-
ics. The selected dental resin-based composites (mono-
mers and fillers) for this study are shown in Table 1.

The rationale behind this selection is rooted in the 
need to capture a broad spectrum of materials used in 
clinical practice. This approach aligned with previous 
studies emphasizing material composition’s signifi-
cance in determining dental composites’ mechanical 
and adhesive properties [1]. By studying a diverse set 
of materials, this study aimed to provide insights that 
could be broadly applicable to clinical scenarios.

Selection of potential modifiers
The research proceeded with identifying candidate 
modifiers that could enhance dental resin composites’ 
adhesion and biomechanical properties. These modifi-
ers encompassed a range of substances, including adhe-
sion promoters, reinforcing agents, and other additives 
known for their potential impact on composite proper-
ties (Table 2).

An extensive review of the existing literature and 
experimental data on dental materials guided the 
selection of these modifiers. Previous studies have 
explored various modifiers, such as silanes and cou-
pling agents, that could significantly influence adhe-
sion [29, 30]. Identifying these modifiers was crucial, as 
they formed the basis for subsequent simulations and 
experimentation.

Molecular modelling of resin‑based composite 
components
This section elaborates on the critical steps in gen-
erating precise three-dimensional (3D) molecular 

structures for the fundamental elements of dental 
resin-based composites, encompassing monomers, fill-
ers, and coupling agents. These computational models 
form the bedrock upon which we gain a comprehen-
sive understanding of the complex molecular interac-
tions that dictate the behavior of these composites. 
This process was initiated by procuring accurate 3D 
representations of the core components of the com-
posite. To obtain these 3D structures in the structure 
data format (SDF), ligands consisting of monomers, 
fillers, and coupling agents were sourced from the 
PubChem database (https:// pubch em. ncbi. nlm. nih. gov/). 
Subsequently, each ligand was subjected to a crucial 
minimization process using OpenBabel version 3.0.1. 
This step was essential to ensure that the molecular 
structures were energetically stable and conformed 
to the most favorable spatial arrangements. Using the 
PubChem database and OpenBabel version 3.0.1, we 
guaranteed that our computational models accurately 
represented the real-world molecular structures of the 
composite constituents.

a. Monomers: Monomers, the primary building blocks 
of the resin matrix, play a pivotal role in determin-
ing the properties of the composite. In this step, the 
molecular structures of selected monomers, includ-
ing HEMA, Bis-GMA, EBPADMA, TEGDMA, and 
UDMA, were constructed. This process involved 
defining the bond lengths, bond angles, and dihedral 
angles to replicate the conformation of these mono-
mers in three dimensions faithfully.

b. Fillers: Fillers, including calcium carbonate, cerium(IV) 
oxide, hydroxyapatite, silica particles, and silicon 
nitride, significantly influence the mechanical prop-
erties of composites. The 3D structures of these fill-
ers were meticulously created using ChemDraw Ultra 
12.0 (PerkinElmer Inc.) [31] to capture their crystalline 
or amorphous nature. This endeavor was crucial for 
understanding how the fillers were dispersed within the 
resin matrix and how their surface properties contrib-
uted to the adhesion and biomechanical performance.

c. Coupling Agents: Coupling agents, such as 3-MPTS, 
TRIS, ICPTES, AEAPTMS, and VTES, enhanced the 
adhesion between the organic and inorganic compo-
nents. ChemDraw Ultra and OpenBabel enabled the 
construction of 3D structures of these coupling agents, 
focusing on their unique functional groups that facilitated 
bonding with organic monomers and inorganic fillers.

Molecular docking simulations
Molecular docking simulations were executed using 
the HADDOCK stand-alone version. The HADDOCK 

https://pubchem.ncbi.nlm.nih.gov/
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software provides a versatile platform for these simu-
lations, offering robust algorithms for exploring bind-
ing modes and energetics [32]. The key objective was to 
predict and elucidate the interactions between the com-
ponents of dental resin-based composites (monomers, 
fillers, and coupling agents). Importantly, in this step, 

the simulations were carried out without including 
specific receptors, which allowed for a more compre-
hensive and open-ended exploration of the intermolec-
ular interactions. Active residues for each ligand were 
meticulously specified to delineate crucial interaction 
sites, whereas passive residues, representing additional 

Table 1 Components and chemical structures of selected dental resin-based composites

Component Chemical Structure Density (g/cm³)

Monomers

 2-Hydroxyethyl methacrylate (HEMA) 1.03

 Bisphenol A glycidyl methacrylate (Bis-GMA) 1.16

 Ethoxylated bisphenol A dimethacrylate (EBPADMA) 1.12

 Triethylene glycol dimethacrylate (TEGDMA) 1.07

 Urethane dimethacrylate (UDMA) 1.11

Fillers
 Calcium Carbonate  (CaCO3) 2.80

 Cerium(IV) Oxide  (CeO2) 7.13

 Hydroxyapatite  (HCa5O13P3) 3.16

 Silica particles  (SiO2) 2.58

 Silicon Nitride  (Si3N4) 3.30
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contributing elements, were also defined. Ambigu-
ous Interaction Restraints (AIRs) were incorporated to 
guide the docking process, notably when experimental 
data hinted at the approximate binding sites. Distance 
restraints of 1.0 Å were employed to enforce specific 
geometrical relationships between atoms or residues 
of the two ligands. Flexible docking was facilitated by 
allowing conformational changes in the ligands during 
simulation. Subsequently, the generated docking solu-
tions were subjected to cluster analysis to identify the 
representative and stable complexes. Energy scoring 
was crucial for evaluating the favorability of binding, 
considering the various scoring functions available in 
HADDOCK.

Molecular dynamics (MD) simulations
This section provides a detailed account of MD simu-
lations, a critical component of the research method-
ology aimed at understanding the behavior of dental 

resin-based composite materials over time and the evo-
lution of intermolecular interactions under dynamic 
conditions. Molecular dynamics simulations are indis-
pensable tools for investigating the dynamic behavior 
of dental resin-based composites over extended peri-
ods. The MD simulation focused on the biomechanical 
properties of the dental composite complexes (Young’s 
modulus, shear modulus, and flexural strength). Hydro-
gen bonds (as stabilizers of ligand-ligand complex inter-
actions) were also calculated. The Forcite module with 
the COMPASS II force field was used in the simulation 
to represent intra- and intermolecular interactions. This 
module and force field are ideal for simulations of poly-
mers and inorganic compounds [33]. In the initial stage 
of the MD simulation, the energy of all dental composite 
complexes (the result of docking simulation) was mini-
mized with a force and energy convergence of 0.001 kcal/
mol/A˚ and 5 ×  10−5 kcal/mol, respectively. Subsequently, 
the system underwent a controlled simulation of the 

Table 2 Coupling agents in dental resin-based composites

Component Chemical Structure Density (g/cm³)

Coupling Agents

 3-Methacryloxypropyltriethoxysilane (3-MPTS) 1.04

 3-(Trimethoxysilyl)propyl methacrylate (TRIS) 0.93

 Isocyanatopropyltriethoxysilane (ICPTES) 0.99

 N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTMS) 0.97

 Vinyltriethoxysilane (VTES) 0.90
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number of particles, system volume, and temperature 
(NVT) ensemble for 50 ns, manipulating the particle 
number, system volume, and temperature. Another 50 ns 
simulation followed this in the number of particles, sys-
tem pressure, and temperature (NPT) ensemble, regulat-
ing particle number, system pressure, and temperature 
at 1.0  bar and 298  K. Pressure and temperature control 
were facilitated through the Nose-Hoover Thermostat-
Langevin and Berendsen barostats, each with damping 
constants of 0.1 and 1.0 ns, respectively. Subsequently, 
the dental composite underwent additional equilibra-
tion in the NVT ensemble at 298 K for 50 ns. The Verlet 
velocity integration algorithm was employed with a time 
step of 1.0 ns, and a high calculation quality was chosen 
to enhance computational accuracy. Van der Waals and 
electrostatic interactions were computed using the par-
ticle mesh Ewald method [34]. The resulting equilibrium 
molecular structure of the dental resin composite was 
used for subsequent structural and mechanical analyses.

Results
Molecular docking simulations for possible combinations 
of monomers, fillers, and coupling agents
Molecular docking simulations were employed to inves-
tigate the potential interactions between the core com-
ponents of dental resin-based composites: monomers, 
fillers, and coupling agents. The primary objective of 
this simulation was to assess the binding energy, van 
der Waals energy, electrostatic energy, and desolvation 
energy for various combinations of these components. 
These results provide crucial insights into the stability 
and affinity of these combinations, which are central to 
the design and performance of dental composites. Table 3 
presents the results of molecular docking simulations for 
various combinations of monomers, fillers, and coupling 
agents. The binding energy values and different energy 
components were reported in kilocalories per mole (kcal/
mol) and were determined with precision. We observed 
notable variations in the binding energies across different 
combinations, signifying diverse interactions between 
the core components. For instance, combinations involv-
ing specific monomers exhibit more favorable binding 
energies than others, suggesting their potential as better 
candidates for dental resin-based composites.

Monomers, including HEMA, Bis-GMA, EBPADMA, 
TEGDMA, and UDMA, were assessed for their interac-
tions with different fillers and coupling agents. The calcu-
lated binding energies revealed distinct patterns. HEMA 
exhibited a strong interaction with  SiO2 across various 
fillers, with a remarkable binding energy of -21.1  kcal/
mol when coupled with TRIS, indicating a favorable 
adhesion profile. This behavior may be attributed to the 
electrostatic energy component, which is significantly 

attractive in the presence of TRIS. For Bis-GMA, the 
results also indicated substantial interactions with TRIS. 
The highest binding energy observed for Bis-GMA was 
− 35.8  kcal/mol, also with  SiO2. The interplay between 
the van der Waals and electrostatic energies governed 
these interactions. EBPADMA displayed notable inter-
actions with TRIS when paired with  SiO2, resulting in 
a binding energy of -30.5  kcal/mol. The contribution of 
the electrostatic energy was substantial. Conversely, 
EBPADMA demonstrated relatively low binding affini-
ties with other coupling agents, such as 3-MPTS and 
ICPTES, across various fillers. The weaker interactions 
might be attributed to the balance between the van der 
Waals and electrostatic energies. TEGDMA’s interac-
tions were consistently influenced by TRIS, with binding 
energies ranging from − 2.6 to -37.6 kcal/mol. TEGDMA, 
when combined with  SiO2 and TRIS, exhibited a binding 
energy of -37.6  kcal/mol. A remarkable aspect of these 
interactions is the role of electrostatic energy, which is 
more pronounced than van der Waals energy. UDMA 
generally exhibits moderate binding affinities when inter-
acting with various fillers and coupling agents. The most 
robust interactions were observed with TRIS, emphasiz-
ing a binding energy of -33.0 kcal/mol for UDMA paired 
with  SiO2. Both the van der Waals and electrostatic com-
ponents played integral roles in these interactions. The 
best monomer-filler-coupling agent combination for each 
monomer type with the lowest binding energy is depicted 
in Fig.  1a, where TEGDMA-SiO2-TRIS possessed the 
lowest binding energy (37.6 kcal/mol). Interestingly,  SiO2 
as a filler and TRIS as a coupling agent significantly influ-
enced the binding energies across all monomers.  SiO2 is 
known for its large surface area and can provide a large 
contact area for monomer interactions [35]. TRIS, a 
tris(hydroxymethyl)aminomethane, is commonly used 
as a coupling agent in polymer composite formulations 
owing to its hydroxyl and amine functional groups, which 
can participate in various interactions with monomers 
[36, 37]. The consistently favorable results of  SiO2 and 
TRIS across multiple monomers suggest their versatility 
and effectiveness in promoting strong interactions, mak-
ing them valuable components for developing composite 
materials for various dental applications. The binding 
energies obtained from the molecular docking simula-
tions serve as crucial indicators of the adhesion strength 
of dental resin-based composites. In the context of this 
study, a higher magnitude of negative binding energy 
signifies stronger intermolecular interactions, highlight-
ing superior adhesion properties—the more negative the 
binding energy, the more stable and favorable the binding 
between the components.

In terms of van der Waals energy, a strong positive 
correlation (r = 0.89) underscores its pivotal role in 



Page 7 of 18Saini et al. BMC Oral Health          (2024) 24:557  

Table 3 Molecular docking simulation results for possible combinations of monomers, fillers, and coupling agents in dental resin-
based composites. The gray box indicates the most favorable combination

Monomer Filler Coupling Agent Binding energy 
(kcal/mol)

Van der Waals 
energy

Electrostatic energy Desolvation energy

HEMA CaCO3 3-MPTS -4.8 ± 0.2 -3.6 ± 0.1 -23.6 ± 1.0 1.2 ± 0.1

TRIS -4.6 ± 0.3 -3.2 ± 0.1 -27.8 ± 0.6 1.5 ± 0.3

ICPTES -5.2 ± 0.3 -3.6 ± 0.2 -25.1 ± 2.5 0.9 ± 0.1

AEAPTMS -4.7 ± 0.3 -3.2 ± 0.2 -27.2 ± 0.3 1.2 ± 0.2

VTES -12.7 ± 0.0 -8.4 ± 0.0 -38.5 ± 0.0 -0.5 ± 0.0

CeO2 3-MPTS -2.4 ± 0.0 -2.6 ± 0.0 -3.9 ± 0.5 0.5 ± 0.1

TRIS -2.2 ± 0.1 -2.8 ± 0.0 0.7 ± 1.6 0.5 ± 0.0

ICPTES -2.3 ± 0.2 -2.8 ± 0.1 -1.0 ± 0.4 0.6 ± 0.2

AEAPTMS -1.6 ± 0.3 -2.0 ± 0.4 1.4 ± 0.1 0.2 ± 0.1

VTES -3.3 ± 0.4 -3.8 ± 0.0 -10.4 ± 0.4 1.6 ± 0.5

HCa5O13P3 3-MPTS -2.6 ± 0.1 -3.6 ± 0.1 -10.6 ± 2.6 2.1 ± 0.0

TRIS -3.1 ± 0.1 -3.1 ± 0.2 -19.7 ± 1.6 2.0 ± 0.2

ICPTES -3.6 ± 0.0 -3.5 ± 0.1 -20.0 ± 0.5 1.9 ± 0.1

AEAPTMS -3.1 ± 0.0 -3.8 ± 0.2 -16.1 ± 1.3 2.3 ± 0.1

VTES -10.0 ± 0.0 -6.8 ± 0.0 -33.3 ± 0.0 0.1 ± 0.0

SiO2 3-MPTS -14.1 ± 0.0 -9.3 ± 0.0 -31.9 ± 0.0 -1.5 ± 0.0

TRIS -21.1 ± 0.0 -9.7 ± 0.0 -92.0 ± 0.0 -2.2 ± 0.0

ICPTES -13.1 ± 0.0 -7.8 ± 0.1 -44.4 ± 0.1 -0.9 ± 0.0

AEAPTMS -15.2 ± 0.0 -8.8 ± 0.0 -50.0 ± 0.0 -1.3 ± 0.0

VTES -10.1 ± 0.0 -6.2 ± 0.0 -10.5 ± 0.0 -2.8 ± 0.0

Si3N4 3-MPTS -9.8 ± 1.3 0.1 ± 1.4 -45.8 ± 7.7 -0.7 ± 0.7

TRIS -10.2 ± 0.0 -5.4 ± 0.0 -55.4 ± 0.0 0.7 ± 0.0

ICPTES -10.7 ± 0.0 -4.9 ± 0.0 -67.6 ± 0.0 0.9 ± 0.0

AEAPTMS -12.8 ± 0.0 -6.0 ± 0.0 -65.7 ± 0.0 -0.2 ± 0.0

VTES -8.8 ± 0.3 -3.3 ± 0.0 -51.8 ± 4.2 -0.3 ± 0.2
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Table 3 (continued)

Monomer Filler Coupling Agent Binding energy 
(kcal/mol)

Van der Waals 
energy

Electrostatic energy Desolvation energy

Bis-GMA CaCO3 3-MPTS -9.7 ± 0.5 -5.6 ± 0.4 -55.1 ± 3.9 1.4 ± 0.3

TRIS -9.8 ± 0.3 -5.7 ± 0.6 -59.1 ± 2.6 1.8 ± 0.2

ICPTES -10.4 ± 0.2 -6.1 ± 0.3 -58.5 ± 1.4 1.6 ± 0.2

AEAPTMS -9.9 ± 0.4 -5.9 ± 0.3 -56.8 ± 1.7 1.7 ± 0.2

VTES -21.6 ± 1.2 -13.2 ± 0.8 -32.4 ± 0.8 -5.2 ± 0.3

CeO2 3-MPTS -4.7 ± 0.2 -5.1 ± 0.3 0.0 ± 1.7 0.4 ± 0.3

TRIS -5.0 ± 0.1 -5.2 ± 0.3 0.4 ± 1.3 0.2 ± 0.3

ICPTES -4.9 ± 0.6 -5.1 ± 0.2 0.6 ± 0.6 0.1 ± 0.5

AEAPTMS -4.9 ± 0.1 -5.0 ± 0.2 1.1 ± 0.7 0.0 ± 0.0

VTES -22.6 ± 0.0 -16.7 ± 0.0 -8.2 ± 0.0 -5.1 ± 0.0

HCa5O13P3 3-MPTS -6.9 ± 0.2 -6.0 ± 0.3 -40.2 ± 3.1 3.1 ± 0.4

TRIS -7.8 ± 0.7 -6.7 ± 0.3 -39.8 ± 0.6 2.9 ± 0.3

ICPTES -8.0 ± 0.5 -6.4 ± 0.5 -42.7 ± 1.0 2.7 ± 0.1

AEAPTMS -6.9 ± 0.3 -5.6 ± 0.1 -40.7 ± 0.0 2.7 ± 0.4

VTES -34.8 ± 0.0 -26.1 ± 0.0 -48.5 ± 0.0 -3.9 ± 0.0

SiO2 3-MPTS -30.9 ± 0.0 -19.6 ± 0.0 -37.4 ± 0.0 -7.5 ± 0.0

TRIS -35.8 ± 0.0 -21.5 ± 0.0 -45.4 ± 0.0 -9.7 ± 0.0

ICPTES -30.1 ± 0.0 -17.9 ± 0.0 -70.0 ± 0.0 -5.2 ± 0.0

AEAPTMS -32.4 ± 0.0 -20.7 ± 0.0 -40.8 ± 0.0 -7.6 ± 0.0

VTES -29.7 ± 0.0 -18.9 ± 0.0 -20.8 ± 0.0 -8.7 ± 0.0

Si3N4 3-MPTS -12.6 ± 0.0 -6.0 ± 0.0 -49.3 ± 0.0 -1.7 ± 0.0

TRIS -13.7 ± 0.0 -5.4 ± 0.0 -74.1 ± 0.0 -0.9 ± 0.0

ICPTES -13.6 ± 0.0 -2.5 ± 0.0 -105.7 ± 0.0 -0.5 ± 0.0

AEAPTMS -13.1 ± 0.0 -2.7 ± 0.0 -85.5 ± 0.0 -1.8 ± 0.0

VTES -24.7 ± 0.0 -12.2 ± 0.0 -61.0 ± 0.0 -6.5 ± 0.0
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Table 3 (continued)

Monomer Filler Coupling Agent Binding energy 
(kcal/mol)

Van der Waals 
energy

Electrostatic energy Desolvation energy

EBPADMA CaCO3 3-MPTS -7.9 ± 0.0 -4.3 ± 0.1 -45.4 ± 0.7 1.0 ± 0.0

TRIS -8.3 ± 0.4 -6.2 ± 0.2 -36.6 ± 0.9 1.5 ± 0.7

ICPTES -7.2 ± 1.1 -4.8 ± 0.4 -40.7 ± 3.1 1.6 ± 0.4

AEAPTMS -8.2 ± 0.7 -5.9 ± 0.0 -37.2 ± 4.0 1.5 ± 0.3

VTES -29.4 ± 0.1 -22.3 ± 0.2 -32.7 ± 3.5 -3.9 ± 0.2

CeO2 3-MPTS -4.1 ± 0.4 -4.7 ± 0.3 -0.9 ± 0.9 0.7 ± 0.3

TRIS -4.5 ± 0.4 -5.0 ± 0.3 -0.0 ± 1.5 0.5 ± 0.4

ICPTES -5.0 ± 0.1 -5.3 ± 0.2 -0.8 ± 0.3 0.4 ± 0.2

AEAPTMS -5.0 ± 0.2 -5.4 ± 0.1 0.2 ± 1.2 0.4 ± 0.3

VTES -26.7 ± 0.0 -21.5 ± 0.0 -18.8 ± 0.0 -3.3 ± 0.0

HCa5O13P3 3-MPTS -6.1 ± 0.9 -5.8 ± 0.4 -26.9 ± 2.6 2.3 ± 0.2

TRIS -6.9 ± 0.0 -6.2 ± 0.0 -28.7 ± 0.0 2.2 ± 0.0

ICPTES -7.3 ± 0.0 -7.0 ± 0.0 -30.0 ± 0.0 2.7 ± 0.0

AEAPTMS -6.0 ± 0.4 -6.0 ± 0.1 -26.9 ± 1.0 2.7 ± 0.2

VTES -25.6 ± 0.0 -20.3 ± 0.0 -37.7 ± 0.0 -1.6 ± 0.0

SiO2 3-MPTS -26.3 ± 0.0 -16.2 ± 0.0 -39.0 ± 0.0 -6.2 ± 0.0

TRIS -30.5 ± 0.0 -13.9 ± 0.0 -98.2 ± 0.0 -6.8 ± 0.0

ICPTES -27.0 ± 0.0 -15.9 ± 0.0 -66.8 ± 0.0 -4.4 ± 0.0

AEAPTMS -29.2 ± 0.0 -15.1 ± 0.0 -104.8 ± 0.0 -3.6 ± 0.0

VTES -30.3 ± 0.0 -21.0 ± 0.0 -4.7 ± 0.0 -8.9 ± 0.0

Si3N4 3-MPTS -16.2 ± 0.0 -6.8 ± 0.0 -78.4 ± 0.0 -1.6 ± 0.0

TRIS -14.4 ± 0.0 -6.8 ± 0.0 -70.4 ± 0.0 -0.5 ± 0.0

ICPTES -12.9 ± 0.0 -3.7 ± 0.0 -74.9 ± 0.0 -1.7 ± 0.0

AEAPTMS -13.5 ± 0.0 -3.0 ± 0.0 -100.8 ± 0.0 -0.4 ± 0.0

VTES -24.9 ± 0.0 -13.2 ± 0.0 -72.0 ± 0.0 -4.5 ± 0.0
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Table 3 (continued)

Monomer Filler Coupling Agent Binding energy 
(kcal/mol)

Van der Waals 
energy

Electrostatic energy Desolvation energy

TEGDMA CaCO3 3-MPTS -8.7 ± 0.3 -3.5 ± 0.1 -67.2 ± 3.5 1.5 ± 0.3

TRIS -9.1 ± 0.2 -3.3 ± 0.1 -70.9 ± 1.2 1.3 ± 0.0

ICPTES -9.5 ± 0.7 -3.6 ± 0.1 -71.6 ± 1.6 1.2 ± 0.5

AEAPTMS -9.1 ± 0.3 -3.7 ± 0.1 -69.1 ± 1.8 1.4 ± 0.1

VTES -20.8 ± 0.0 -12.0 ± 0.0 -65.8 ± 0.0 -2.2 ± 0.0

CeO2 3-MPTS -2.6 ± 0.1 -3.2 ± 0.0 2.0 ± 0.0 0.4 ± 0.1

TRIS -2.6 ± 0.3 -3.2 ± 0.1 -0.4 ± 0.4 0.6 ± 0.2

ICPTES -2.4 ± 0.4 -2.9 ± 0.3 -4.6 ± 0.2 0.9 ± 0.1

AEAPTMS -2.6 ± 0.3 -3.2 ± 0.2 0.9 ± 0.9 0.5 ± 0.2

VTES -15.0 ± 0.0 -10.2 ± 0.0 -31.8 ± 0.0 -1.6 ± 0.0

HCa5O13P3 3-MPTS -7.5 ± 0.0 -3.7 ± 0.1 -57.5 ± 1.8 1.9 ± 0.2

TRIS -6.3 ± 0.3 -4.2 ± 0.2 -48.3 ± 0.2 2.8 ± 0.1

ICPTES -7.1 ± 0.1 -3.6 ± 0.0 -55.2 ± 0.6 2.0 ± 0.0

AEAPTMS -7.4 ± 0.0 -3.2 ± 0.1 -61.1 ± 1.5 1.9 ± 0.0

VTES -17.8 ± 0.0 -12.2 ± 0.0 -46.8 ± 0.0 -0.9 ± 0.0

SiO2 3-MPTS -22.6 ± 0.0 -11.9 ± 0.0 -69.9 ± 0.0 -3.6 ± 0.0

TRIS -37.6 ± 0.0 -14.6 ± 0.0 -184.4 ± 0.0 -4.5 ± 0.0

ICPTES -22.8 ± 0.0 -10.1 ± 0.0 -104.8 ± 0.0 -2.2 ± 0.0

AEAPTMS -23.2 ± 0.0 -8.9 ± 0.0 -123.5 ± 0.0 -1.9 ± 0.0

VTES -19.5 ± 0.0 -12.4 ± 0.0 -45.5 ± 0.0 -2.5 ± 0.0

Si3N4 3-MPTS -9.0 ± 0.6 -4.7 ± 0.6 -56.1 ± 2.5 1.3 ± 0.3

TRIS -12.2 ± 0.1 -3.8 ± 0.1 -94.1 ± 4.2 1.0 ± 0.3

ICPTES -13.6 ± 0.0 -3.2 ± 0.0 -97.2 ± 0.0 -0.7 ± 0.0

AEAPTMS -14.0 ± 0.0 -3.8 ± 0.0 -84.0 ± 0.0 -1.8 ± 0.0

VTES -19.5 ± 0.0 -9.2 ± 0.0 -70.4 ± 0.0 -3.3 ± 0.0
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determining the binding energy. As the van der Waals 
energy increases, there is a corresponding increase in 
the overall binding energy. This underscores the signifi-
cant role that van der Waals forces play in shaping the 
overall binding energy, as supported by several studies 
[39–41]. In contrast, a positive correlation of 0.49 was 
evident when considering electrostatic energy, albeit 
weaker than the correlation observed with van der 
Waals energy. This observation suggests that while elec-
trostatic interactions contribute to the binding energy, 
their influence is not dominant, and other contributing 
factors may come into play, as demonstrated in previ-
ous research [42, 43]. Examining desolvation energy, a 
substantial positive correlation of 0.85 was detected, 
emphasizing the significant impact of desolvation 

energy on binding energy [44, 45]. This correlation sug-
gests a strong connection between the ability to des-
olvate or displace solvent molecules from the binding 
site and the overall binding energy. This correlation 
indicates that as the desolvation energy increases, there 
is a corresponding increase in the binding energy. This 
finding is particularly relevant to adhesion in the con-
text of dental resin-based composites. The desolvation 
energy plays a crucial role in the adhesion process by 
influencing the interactions between different com-
posite material components. When solvent molecules 
are effectively displaced from the binding site, they 
enhance the interaction and binding strength between 
the components, contributing to a more stable com-
plex. A higher desolvation energy is associated with a 

Table 3 (continued)

Monomer Filler Coupling Agent Binding energy 
(kcal/mol)

Van der Waals 
energy

Electrostatic energy Desolvation energy

UDMA CaCO3 3-MPTS -11.3 ± 0.6 -5.2 ± 0.1 -77.3 ± 4.0 1.7 ± 0.2

TRIS -10.9 ± 0.5 -4.7 ± 0.3 -77.8 ± 3.0 1.6 ± 0.2

ICPTES -11.1 ± 0.6 -5.0 ± 0.3 -76.2 ± 4.1 1.5 ± 0.2

AEAPTMS -11.0 ± 0.5 -5.1 ± 0.2 -74.7 ± 3.5 1.6 ± 0.1

VTES -14.1 ± 0.5 -8.4 ± 0.8 -56.3 ± 2.6 -0.1 ± 0.0

CeO2 3-MPTS -3.6 ± 0.4 -3.7 ± 0.2 -0.1 ± 0.3 0.1 ± 0.1

TRIS -3.5 ± 0.4 -4.2 ± 0.2 1.1 ± 0.6 0.5 ± 0.3

ICPTES -4.0 ± 0.3 -4.2 ± 0.1 1.2 ± 0.9 0.1 ± 0.3

AEAPTMS -3.6 ± 0.5 -3.8 ± 0.4 1.1 ± 0.5 0.1 ± 0.1

VTES -21.8 ± 0.0 -16.0 ± 0.0 -24.6 ± 0.0 -3.4 ± 0.0

HCa5O13P3 3-MPTS -9.4 ± 0.0 -4.6 ± 0.1 -71.8 ± 1.8 2.3 ± 0.2

TRIS -5.5 ± 0.3 -3.6 ± 0.2 -42.0 ± 0.2 2.4 ± 0.1

ICPTES -8.6 ± 0.1 -4.3 ± 0.0 -66.7 ± 0.6 2.4 ± 0.0

AEAPTMS -8.9 ± 0.0 -3.8 ± 0.1 -73.9 ± 1.5 2.3 ± 0.0

VTES -28.3 ± 0.0 -5.8 ± 0.1 -91.4 ± 1.8 3.0 ± 0.2

SiO2 3-MPTS -28.4 ± 0.0 -15.1 ± 0.0 -68.4 ± 0.0 -6.5 ± 0.0

TRIS -33.0 ± 0.0 -15.7 ± 0.0 -99.8 ± 0.0 -7.3 ± 0.0

ICPTES -27.6 ± 0.0 -14.7 ± 0.0 -57.5 ± 0.0 -7.1 ± 0.0

AEAPTMS -28.2 ± 0.0 -14.3 ± 0.0 -68.6 ± 0.0 -7.1 ± 0.0

VTES -31.1 ± 0.0 -20.0 ± 0.0 -30.0 ± 0.0 -8.1 ± 0.0

Si3N4 3-MPTS -12.0 ± 0.7 -6.2 ± 0.2 -83.2 ± 7.2 2.5 ± 0.3

TRIS -14.2 ± 0.0 -4.1 ± 0.0 -95.3 ± 0.0 -0.6 ± 0.0

ICPTES -14.1 ± 0.0 -3.1 ± 0.0 -97.4 ± 0.0 -1.2 ± 0.0

AEAPTMS -13.9 ± 0.6 -7.3 ± 0.4 -83.3 ± 8.3 1.7 ± 0.1

VTES -28.7 ± 0.0 -14.3 ± 0.8 -98.7 ± 4.2 -4.6 ± 0.3
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greater ability to remove solvent molecules, leading to 
thermodynamically favorable and more robust bind-
ing interactions. Therefore, the positive correlation 
observed in this study underscores the importance of 
desolvation energy in influencing the adhesion proper-
ties of dental resin-based composites.

Molecular dynamics simulations for the best combinations 
of monomers, fillers, and coupling agents
To delve deeper into the impact of fillers and coupling 
agents on the monomer within dental composites, micro-
mechanics models have been introduced to quantitatively 
predict Young’s modulus, Shear Modulus, and flexural 
strength of the generated dental composite based on the 
MD simulation.

1. Young’s modulus (E)

Young’s modulus is often estimated using the rule of 
mixtures, especially for composite materials.

Where:

(1)E =

∑n

i=1
fi · Ei

• E is the Young’s modulus of the composite.
• fi is the volume fraction of component i.
• Ei is the Young’s modulus of component i.

2. Shear modulus (G)

The shear modulus can also be estimated using the 
rule of mixtures.

Where:

• G is the shear modulus of the composite.
• fi is the volume fraction of component i.
• Gi is the Shear modulus of component i.

3. Flexural strength

The flexural strength of a composite material can be 
estimated using the following equation:

(2)G =
1

2

n

i=1
fi · Gi

(3)σflexural =
√
σtensile · σcompressive

Fig. 1 Results of the molecular docking screening simulation. A The best monomer-filler-coupling agent combination for each monomer type 
with the lowest binding energy value related to the adhesion strength. B Correlation matrix of binding energy (kcal/mol) with individual energy 
components. Figure 1b provides a correlation matrix that quantifies the degree of association between the binding energy, van der Waals energy, 
electrostatic energy, and desolvation energy. The values in the matrix range from − 1 to 1, where 1 signifies a perfect positive correlation, -1 
indicates a perfect negative correlation, and 0 represents no correlation. Binding energy, as the central parameter in our study, exhibited notable 
correlations with other energy components. The negative sign indicates that energy is released during the formation of the complex, making it 
thermodynamically favorable [38]. Therefore, when comparing different combinations or complexes, a higher (more negative) binding energy 
corresponds to a higher adhesion strength. Combinations featuring specific monomers, fillers, and coupling agents demonstrated more favorable 
binding energies than the others. This observation suggests that these monomers are promising candidates for enhancing the adhesive properties 
of dental resin-based composites
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Where:

• σflexural is the flexural strength.
• σtensile is the tensile strength.
• σcompressive is the compressive strength.

Figure  2 presents the mechanical properties of vari-
ous dental composite complexes, as determined through 
the MD simulation. These simulations offer a detailed 
atomic-level understanding of resin-based composites’ 
structural integrity and performance over time, allowing 
for valuable insights into their applicability in restora-
tive dentistry. Young’s modulus, representing material 
stiffness, is crucial in dental applications [46]. Incorpo-
rating silica nanoparticles enhanced stiffness, support-
ing the notion that including inorganic fillers positively 
influences mechanical properties [47]. The stiffness 

of HEMA-SiO2-TRIS, as indicated by its high Young’s 
modulus of 9.8 GPa, underscores the reinforcing effect of 
silica nanoparticles and highlights its potential in load-
bearing dental restorations. BisGMA-SiO2-TRIS and 
EBPADMA-SiO2-TRIS demonstrate competitive Young’s 
modulus values (8.5 GPa and 9.2 GPa, respectively), rein-
forcing the significance of the monomer composition in 
influencing mechanical properties. BisGMA, a mono-
mer widely used in dental composites, has been associ-
ated with high stiffness, corroborating the findings of this 
study. The observed trends align with previous research 
emphasizing monomer selection’s impact on dental com-
posites’ mechanical behavior [48].

The shear modulus, indicative of a material’s response 
to shear stress, is critical for assessing the stability of a 
complex under various loading conditions [49]. In this 
study, EBPADMA-SiO2-TRIS demonstrated the highest 

Fig. 2 Molecular dynamics simulation results for the best dental composite complex. A Young’s modulus (GPa). B Shear modulus (GPa). C Binding 
strength (MPa). D Hydrogen bonds
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shear modulus at 4.8 GPa, indicating robust resistance to 
shear forces. HEMA-SiO2-TRIS and UDMA-SiO2-TRIS 
also exhibited notable shear moduli, highlighting their 
ability to withstand shear stress. On the other hand, flex-
ural strength, indicative of a material’s resistance to bend-
ing stresses, is a crucial parameter in dental restorations 
[50]. BisGMA-SiO2-TRIS displays the highest flexural 
strength at 100.2 MPa, indicating excellent resistance to 
bending forces. TEGDMA-SiO2-TRIS and HEMA-SiO2-
TRIS also exhibited substantial flexural strength, suggest-
ing their suitability for applications requiring resistance 
to bending stresses. Furthermore, the number of hydro-
gen bonds plays a pivotal role in determining the struc-
tural stability of dental composites. The dental composite 
TEGDMA-SiO2-TRIS, characterized by the highest num-
ber of hydrogen bonds (18), suggests solid intermolecular 
interactions. This is likely to contribute to the increased 
stiffness and resistance to deformation, as reflected in 
the high values of Young’s modulus and shear modulus. 
The hydrogen bonds act as additional molecular connec-
tions, reinforcing the structural integrity of the compos-
ite. Dental composites such as HEMA-SiO2-TRIS and 
UDMA-SiO2-TRIS, which exhibit a considerable number 
of hydrogen bonds, also exhibit good structural stability. 
This moderate level of hydrogen bonding likely contrib-
utes to balanced mechanical properties, with Young’s 
modulus and Shear’s modulus falling within a favorable 
range. The complete results are shown in Table 4.

Determining the “best” dental composite complex is a 
multifaceted decision that requires careful consideration 
of specific applications and their corresponding material 
requirements. From the perspective of adhesion, the con-
sistent augmentation of the adhesion power through  SiO2 
and TRIS is noteworthy, as evidenced by their robust 
binding energies. These components have emerged as key 
contributors to the adhesive properties of dental resin-
based composites, laying a solid foundation for their effi-
cacy in diverse dental applications.

Turning attention to biomechanical properties, the 
nuances of each composite complex outlined in Table 4 
underscore the importance of aligning the choice with 
the intended use and sought-after material properties. 

In scenarios where stiffness is paramount, HEMA-SiO2-
TRIS presents itself as a compelling option, given its 
high Young’s modulus. This composite complex may find 
practical applications when structural rigidity is critical, 
such as in restorations subjected to significant chewing 
stress. Conversely, for applications where resistance to 
bending stresses holds prominence, BisGMA-SiO2-TRIS 
has the highest flexural strength. This composite com-
plex is particularly well suited for situations where the 
ability to withstand deformation is a critical mechani-
cal requirement, ensuring the longevity and durability of 
dental restorations, especially in areas prone to bending 
stresses. Notably, EBPADMA-SiO2-TRIS and TEGDMA-
SiO2-TRIS exhibited balanced mechanical properties, 
rendering them versatile options suitable for various 
applications. The equilibrium between stiffness, shear 
modulus, and bending strength positions these compos-
ite complexes as adaptable solutions capable of address-
ing a spectrum of clinical requirements. This versatility 
enhances their utility across different scenarios, offering 
a practical and well-rounded approach to dental compos-
ite selection.

Discussion
Biomechanical property enhancement through molecular 
docking and dynamics simulations
The amalgamation of dental materials has been dem-
onstrated to significantly improve biocompatibility and 
functionality in various dental procedures. Notably, 
mineral trioxide aggregate (MTA) stands out as a prime 
example, renowned for its exceptional biocompatibil-
ity with oral and dental tissues. Initially engineered for 
dental root repair in endodontic interventions, MTA 
comprises commercial Portland cement fortified with 
bismuth oxide powder to enhance radiopacity [51]. 
Building upon these findings, our aim is to investigate 
the potential benefits of combining various monomers, 
fillers, and coupling agents within dental resin-based 
composites. In this study, we employed molecular dock-
ing and dynamics simulations to enhance the biome-
chanical properties of dental resin-based composites. By 
scrutinizing the intricate molecular interactions between 

Table 4 Mechanical properties of dental composite complexes based on MD simulation

Dental Composite Complex Young’s Modulus (GPa) Shear Modulus (GPa) Flexural Strength (MPa) Hydrogen 
Bonds

HEMA-SiO2-TRIS 9.8 4.5 90.5 15

BisGMA-SiO2-TRIS 8.5 4.2 100.2 10

EBPADMA-SiO2-TRIS 9.2 4.8 85.7 12

TEGDMA-SiO2-TRIS 8.7 4.0 95.5 18

UDMA-SiO2-TRIS 9.0 4.3 88.2 14
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monomers, fillers, and coupling agents, we aimed to rede-
fine the design principles underlying dental biomaterials. 
Molecular docking simulations served as the foundation 
for elucidating the binding affinities between composite 
components. Through meticulous exploration of bind-
ing energies, van der Waals forces, electrostatic interac-
tions, and desolvation energies, we discerned the driving 
forces shaping composite stability. Notably, certain com-
binations, such as HEMA-SiO2-TRIS and BisGMA-SiO2-
TRIS, exhibited robust binding energies, underscoring 
their potential for enhancing adhesion. Moving beyond 
static interactions, molecular dynamics simulations pro-
vided dynamic insights into composite behavior under 
varying loading conditions. By quantifying Young’s mod-
ulus, shear modulus, and flexural strength, we gained a 
nuanced understanding of composite mechanics. The 
EBPADMA-SiO2-TRIS composite emerged as a front-
runner, showcasing exceptional shear modulus and bal-
anced mechanical properties, essential for withstanding 
shear and bending stresses in clinical settings. The inte-
gration of molecular docking and dynamics simulations 
enabled a holistic approach to biomaterial optimization. 
By correlating molecular interactions with mechani-
cal performance, we identified composite formulations 
with superior biomechanical properties. This molec-
ular-driven approach offers a paradigm shift in dental 
biomaterial design, promising enhanced longevity and 
performance in restorative dentistry.

Strengths, limitations, and clinical considerations
Strengths
The utilization of molecular docking and dynamics-
driven simulations in optimizing dental resin-based 
composites offers several notable strengths. Firstly, 
these computational techniques provide a detailed 
atomic-level understanding of the interactions between 
composite components. By simulating the behavior of 
monomers, fillers, and coupling agents at the molecular 
level, researchers can gain insights into the mechanisms 
underlying adhesive and biomechanical properties. This 
granular understanding enables the identification of can-
didate modifiers with the potential to enhance composite 
performance. Molecular docking simulations allow for 
the rapid screening of numerous combinations of com-
posite components. By predicting binding energies and 
interaction patterns, researchers can prioritize the most 
promising candidate materials for further investigation 
[52, 53]. This approach streamlines the materials selec-
tion process, enabling researchers to focus resources on 
the most viable options. Furthermore, molecular dynam-
ics simulations offer a dynamic perspective on composite 
behavior over time. By subjecting composite complexes 
to simulated environmental conditions, researchers can 

assess their mechanical properties under realistic loading 
scenarios [54, 55]. This dynamic understanding is crucial 
for predicting composite performance in the complex 
oral environment, where materials are subjected to a 
range of mechanical stresses. The integration of compu-
tational simulations with experimental validation holds 
significant promise for accelerating materials develop-
ment in dentistry. By combining computational predic-
tions with empirical data, researchers can iteratively 
refine composite formulations, leading to the develop-
ment of optimized materials with enhanced properties.

Limitations
Despite their strengths, computational simulations also 
have inherent limitations that must be considered. One 
limitation is the reliance on computational models, which 
may not fully capture the complexity of real-world sys-
tems. Simplifications and assumptions made in modelling 
approaches can introduce inaccuracies and limitations 
in simulation results [56, 57]. Additionally, the accuracy 
of computational predictions depends on the quality of 
input parameters and force fields used in simulations 
[58]. Inaccurate force field parameters or incomplete 
molecular representations can lead to biased results and 
erroneous conclusions. Therefore, careful validation of 
simulation results against experimental data is essential 
to ensure their reliability. Furthermore, computational 
simulations require significant computational resources 
and expertise to perform. High-performance comput-
ing infrastructure and specialized software are needed 
to conduct molecular docking and dynamics simulations 
efficiently. Moreover, interpreting simulation results and 
translating them into actionable insights require exper-
tise in materials science, dentistry, and computational 
chemistry.

Clinical considerations
The findings from computational simulations have 
important implications for clinical practice in restora-
tive dentistry. Optimized dental resin-based composites 
with enhanced adhesive and biomechanical properties 
can offer several clinical advantages. Improved adhesion 
properties can help minimize microleakage and second-
ary caries, leading to more durable and long-lasting resto-
rations [59, 60]. By enhancing the bond strength between 
the composite and tooth structure, optimized materials 
can reduce the risk of restoration failure and the need 
for costly retreatment. Enhanced biomechanical proper-
ties, such as increased stiffness and flexural strength, can 
improve the longevity and performance of dental restora-
tions [61, 62]. Materials with higher mechanical strength 
can withstand chewing forces more effectively, reducing 
the risk of fracture and wear over time. This can lead to 
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better clinical outcomes and increased patient satisfac-
tion with dental restorations [63, 64]. Furthermore, the 
versatility of optimized composite materials allows for 
their use in a wide range of clinical applications. From 
simple fillings to more complex restorations, these mate-
rials can provide aesthetic appeal, biocompatibility, and 
mechanical reliability, meeting the diverse needs of 
patients and clinicians alike. However, it is essential to 
recognize that the translation of computational findings 
into clinical practice requires careful validation and regu-
latory approval. Experimental validation of composite 
performance in vitro and in vivo is necessary to confirm 
the predicted benefits and ensure the safety and efficacy 
of new materials. Additionally, regulatory bodies such as 
the Food and Drug Administration (FDA) play a crucial 
role in evaluating and approving dental materials for clin-
ical use, ensuring that they meet stringent standards for 
safety and performance.

Conclusion
Molecular docking simulations investigated the interac-
tions between monomers, fillers, and coupling agents 
in dental resin-based composites. The results revealed 
diverse binding energies across different combinations, 
with specific monomers exhibiting more favorable inter-
actions. Notably,  SiO2 and TRIS consistently influenced 
the binding energies across multiple monomers, sug-
gesting their versatility in promoting strong interactions 
related to adhesion strength. Molecular dynamics simu-
lations further elucidated the mechanical properties of 
dental composite complexes, showcasing the impact of 
monomer composition on the biomechanical properties 
(Young’s modulus, shear modulus, flexural strength, and 
hydrogen bonding. These findings underscore the impor-
tance of careful selection based on specific application 
needs, with HEMA-SiO2-TRIS excelling in stiffness, Bis-
GMA-SiO2-TRIS in bending strength, and EBPADMA-
SiO2-TRIS offering balanced mechanical properties.

Future works
Experimental validation of the computational findings 
would strengthen the reliability of the results. Conduct-
ing laboratory tests to verify the predicted mechani-
cal properties and efficacy of the suggested dental 
composite formulations would be crucial for translat-
ing computational insights into practical applications. 
For instance, the combination of EBPADMA (primary 
monomer),  SiO2 (filler), and TRIS (coupling agent) can 
be formulated using appropriate ratios. The polym-
erization process can be performed by applying light, 
heat, or chemical initiators. Subsequently, the adhesion 
and biomechanical properties were assessed through 
laboratory tests. Adhesion testing involves applying the 

composite to dental substrates and conducting micro-
tensile or micro-shear bond strength tests using a uni-
versal testing machine. For biomechanical properties, 
evaluations include Young’s Modulus, Shear Modu-
lus, and flexural strength, utilizing techniques such as 
nanoindentation, dynamic mechanical analysis, and 
three-point bending tests.
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